skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McNeal, J Stu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a biologically inspired control system developed for maintaining balance in a simulated human atop an oscillating platform. This work advances our previous research by adapting a human balance controller to an inverted pendulum and controlled by linear-Hill muscle models. To expedite neuron/synapse parameter value selection, we employ a novel two-stage process that pairs a previously developed analytic method with particle swarm optimization. Using the parameter values found analytically as inputs for particle swarm optimization (PSO), we take advantage of the benefits of each method while avoiding their pitfalls. Our results show that PSO optimization allowed improved balance control from modest (<10%) changes to the synaptic parameters. The improved performance was accompanied by muscle coactivations, however, and further refinement is needed to better align overall behavior of the neural controller with biological systems. 
    more » « less